Two load sharing plates fixation in mandibular condylar fractures: Biomechanical basis

Salvatore PARASCANDOLO, Director, MD1, Alessia SPINZIA, Resident, MD2, Stefano PARASCANDOLO, Fellow, DDS1, Pasquale PIOMBINO, Assistant Professor, MD3, Luigi CALIFANO, Director, MD2

1 Department of Maxillofacial Surgery (Head: Prof. S. Parascandolo), “A. Cardarelli” Hospital of Naples, Via Antonio Cardarelli n°9, 80131 Naples, Italy; 2 Department of Maxillofacial Surgery (Head: Prof. L. Califano), University Federico II of Naples, Via Sergio Fossati n° 5, 80131 Naples, Italy

SUMMARY. Mandibular condylar fractures have a high incidence but there is no consensus regarding the best choice of osteosynthesis. From a review of the literature, it is evident that the technique used most frequently for fixation is the positioning of a single plate despite complications concerning plate fracture or screw loosening have been reported by various authors. Different studies have highlighted that the stability of osteosynthesis is correlated with the mechanical strains occurring in the condylar region, generated by the muscles of mastication. The aim of our study was, through a mandibular finite element model (FEM), to confirm this correlation and to analyse the behaviour of single and double elements of union in the fixation of mandibular subcondylar fractures. We concluded that the use of two plates provides greater stability compared with the single plate, reducing the possibility of displacement of the condylar fragment. Therefore we recommend that this technique should be adopted whenever possible. © 2009 European Association for Cranio-Maxillo-Facial Surgery

Keywords: mandibular condylar fractures, compressive stress patterns, tensile stress patterns, fixation with two plates

INTRODUCTION

Between 17.5% and 52% of all mandibular fractures are in the condylar region (Zachariades et al., 2006). Even if the are despite being very common, their treatment remains controversial (Cascone et al., 2008). In contrast to the non-surgical approach to condylar fractures, in children, for which there is a good consensus of opinion, the treatment of condylar fractures in adults is still a much debated topic (Ellis and Dean, 1993). Although there is still controversy about the therapy for condylar fractures in adult patients, many surgeons favour open treatment of displaced condylar fractures, because such reduction and rigid fixation allows good anatomical repositioning and immediate function (Choi et al., 2001). Different types of rigid internal fixation are available for the reduction and fixation of condylar fractures (Tominaga et al., 2006). Such techniques are the result of progress which has led to the development of numerous osteosynthesis methods in clinical routine (Seemann et al., 2007). However, there is no consensus regarding the choice of the best type of osteosynthesis (Tominaga et al., 2006). From data in the literature, it is evident that the technique used most frequently is the positioning of a single plate, despite complications concerning plate fracture or screw loosening having been reported by various authors (Gysi, 1921; Lindahl, 1977; Kubein and Jähnig, 1983; Hart et al., 1988; Iizuka et al., 1991; Paydar et al., 1991; Sargent and Green, 1992; Ellis and Dean, 1993; Meijer et al., 1993; Krenkel, 1994; Throckmorton and Dechow, 1994; Hammer et al., 1997; Choi et al., 1999, 2001; Meyer et al., 2002, 2006; Rallis et al., 2003; Tominaga et al., 2006; Seemann et al., 2007). On the other hand, favourable data have demonstrated the greater stability of the double plate compared with the use of the single plate in the fixation of mandibular condylar fractures (Gysi, 1921; Lindahl, 1977; Kubein and Jähnig, 1983; Hart et al., 1988; Iizuka et al., 1991; Paydar et al., 1991; Ellis and Dean, 1993; Meijer et al., 1993; Krenkel, 1994; Hammer et al., 1997; Choi et al., 1999, 2001; Meyer et al., 2002, 2006; Rallis et al., 2003; Tominaga et al., 2006), but at the cost of an additional plate and longer operation times (Rallis et al., 2003). Despite this, there are no clinical studies that have proved the usefulness of a 2-miniplate system (Choi et al., 2001). Different studies (Paydar et al., 1991; Sargent and Green, 1992; Meijer et al., 1993; Throckmorton and Dechow, 1994; Meyer et al., 2002, 2006; Rallis et al., 2003; Seemann et al., 2007) have highlighted that the concept of the stability of osteosynthesis is correlated with the mechanical strains that occur in the condylar region, generated by the masticatory muscles. The goal of this study is to analyse the biomechanical stability of two elements of union compared with a single element of union in the treatment of mandibular condylar fractures, through the use of a mandibular finite element model (FEM).
MATERIALS AND METHODS

We carried out our own investigations by means of a mandibular FEM.

The starting model is based on a real surface mock-up of the mandible, carried out through a triangulation of the same in Virtual Reality Modeling Language (VRML) (Verna et al., 1999) (Fig. 1).

The model created is three-dimensional and takes into account the anisotropic properties typical of the mandibular bone; this allows there to be a correspondence between the simulated and the real mandible. The mandible was divided according to stiffness: in the inner area, a softer spongy structure, and, in the outer area, a harder structure.

These areas are characterized by a variable and growing stiffness passing from the posterior to the anterior aspect of the mandibular body.

The mandible was subjected to six muscular forces active during mouth closure: anterior temporalis (AT); posterior temporalis (PT); superficial masseter (SM); deep masseter (DM); medial pterygoid (MP); and lateral pterygoid (LP).

Mastication is accomplished through the activity of these muscles. The values of these forces expressed in MegaPascal (MPa) were obtained from literature (Paydar et al., 1991) (Table 1).

In the model the intensity and the direction of the muscular action and the mastication pressure exerted were considered to be constant (this latter is not in fact rigorously constant because the occlusal forces increase by moving themselves from the incisor area to the first molar) and equal to the maximum values. The occlusal point considered was modelled with a knot tied in a direction normal to the occlusal plane. The boundary conditions (the conditions tied) used to simulate the temporomandibular joint were carried out through some springs in direction normal to condylar surfaces, distributed on the anterior-superior side of the condyles, in order to make them work only in compression. The model proposed, and already quoted in literature (Gysi, 1921; Barbenel, 1972; Champy and Lodde, 1976; Lindahl, 1977; Kubein and Jähnig, 1983; Faulkner et al., 1987; Hart et al., 1988; Iizuka et al., 1991; Ellis and Dean, 1993; Meijer et al., 1993; Krenkel, 1994; Hammer et al., 1997; Choi et al., 1999, 2001; Meyer et al., 2002, 2006; Tominaga et al., 2006; Cascone et al., 2008), was created with boundary conditions in order to analyse the mechanical—structural behaviour of the mandible during the function of the masticatory muscular forces. In our mandibular model, a right subcondylar fracture was caused and repaired through the use of union elements, having two different methods of fixation. The union elements that we used were made of titanium American Society for Testing and Materials (ASTM) grade 5, corresponding to the alloy Ti6Al4V (Titanium, 6% Aluminium, 4% Vanadium), the one which is most frequently used. It is one of the alpha—beta alloys, containing both alpha stabilizing elements (6% aluminium) and beta stabilizing elements (4% vanadium) and presenting also certain mechanical and physical characteristics listed in Table 1. The first technique consisted in the positioning of one element of union (simulating a straight four hole plate) in the posterior border of the external surface of the condylar neck along its axis (Fig. 2). The second technique consisted in the use of two elements of union (simulating two straight four hole plates), the first positioned as in the previous case, the second positioned parallel to and below the sigmoid notch (Fig. 3). The mandibles, repaired with these two different techniques, were subjected to the forces of the six above mentioned muscles in order to analyse the mechanical—structural behaviour of the fracture line in function of the muscular forces applied on it during mastication.

RESULTS

In the first part of our study, we confirmed the presence of tensile and compressive mechanical isostatic strain lines in the condylar region during the physiological act of mastication. The main finding was that there were compressive isostatic strain patterns along the

![Fig. 1 — Superficial mesh generated in the boundary conditions code: 4560 quadrilateral elements at eight knots.](image)

![Table 1 — Chemical composition and mechanical properties and physical properties of the elements of union](table)

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>Mechanical properties</th>
<th>Physical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanium ASTM grade 5 (Ti6Al4V)</td>
<td>Traction breaking load: 950 MPa</td>
<td>Young’s Modulus: 113,800</td>
</tr>
<tr>
<td></td>
<td>Compression breaking load: 970 MPa</td>
<td>Poisson coefficient: 0.34 MPa</td>
</tr>
</tbody>
</table>
posterior border of the condylar region and tensile iso-
static strain patterns running parallel to and below the
sigmoid notch (Fig. 4 Table 2).

The analysis of the behaviour of the mandibular model
repaired through the two techniques described and submit-
ted to the masticatory load demonstrates the presence of
a gap (d) inside the condylar fracture line in both cases.
But the significant result is that the value of the gap
was considerably smaller in the case in which two ele-
ments of union were used for the fixation (Table 3).

DISCUSSION

Mandibular condylar fractures are one of the most fre-
quent injuries of the facial skeleton. Although they are
very common, their treatment in adults remains contro-
versial (Cascone et al., 2008).

Recently, a consensus for the open reduction and rigid fix-
ation of condylar fractures has been obtained (Seemann
et al., 2007), but there is no consensus regarding the choice
of the best type of osteosynthesis. From a review of the liter-
ature it is evident that the technique used most frequently for
fixation is the positioning of a single plate, even if complica-
tions concerning plate fracture or screw loosening have been
reported by various authors (Gysi, 1921; Lindahl, 1977;
Kubein and Jähnig, 1983; Hart et al., 1988; Iizuka et al.,
1991; Paydar et al., 1991; Sargent and Green, 1992; Ellis
and Dean, 1993; Meijer et al., 1993; Krenkel, 1994; Throck-
morton and Dechow, 1994; Hammer et al., 1997; Choi et al.,
1999, 2001; Meyer et al., 2002, 2006; Rallis et al., 2003;
Tominaga et al., 2006; Seemann et al., 2007).

Choi et al. (1999), comparing the biomechanical sta-
bility of four different plating techniques used to fix con-
dylar neck fractures when submitted to a functional load,
demonstrated that a double miniplate was more stable
than a single plate.

The same authors in another clinical study reported on
their experience with 40 condylar neck fractures in 37 pa-
tients who had been treated with a single minidynamic
compression plate or with double plates. Complications
concerning the plates (plate fractures or screw loosening)
ocurred exclusively in the groups that had been treated
with a single plate, but not in those where two plates
were used (Choi et al., 2001).

The use of double plates instead of a single plate is also
recommended by Rallis et al. who in their retrospective study
of 45 patients treated with single and double plates demon-
strated that the use of 2.0 mm miniplates seems to produce
better stability and fewer complications (Rallis et al., 2003).

In 2006 Tominaga et al., through the use of 18 syn-
thetic mandibles in which they caused and then treated
subcondylar fractures with different osteosynthesis tech-
niques, demonstrated, by submitting the same mandibles
to the masticatory load, that the mandibles repaired with
double plates showed better stability (Tominaga et al.,
2006).
In our surgical experience, in accordance with the authors above mentioned, we use, whenever possible, a double plate in the treatment of condylar fractures. In accordance with Meyer (Meyer et al., 2006), the principal goal of our treatment, in addition to achieving an anatomical reduction, is to maintain this reduction by means of stable osteosynthesis. Different studies (Paydar et al., 1991; Sargent and Green, 1992; Meijer et al., 1993; Throckmorton and Dechow, 1994; Meyer et al., 2002, 2006; Rallis et al., 2003; Seemann et al., 2007) have highlighted that the concept of stable osteosynthesis is correlated to the mechanical strains arising in the condylar region during mastication due to the action of the muscles acting on the mandible.

Throckmorton (Throckmorton and Dechow, 1994), in 1994, through an experiment in vitro on human mandibles, identified the presence of tensile strains occurring on the anterior and lateral surfaces of the condylar process and of compressive strains on the posterior surface. But it was Meyer (Meyer et al., 2002), in 2002, who for the first time developed a masticatory load device, capable of reproducing with accuracy the forces applied on the mandible during mastication. Using mandibles of cadavers put under a masticatory load, he highlighted and confirmed, through a photoelastic analysis, the presence of compressive strains running along the posterior border of the ramus and tensile strains positioned parallel to and below the sigmoid notch (Meyer et al., 2002). In light of Throckmorton’s (Throckmorton and Dechow, 1994) and Meyer’s experiments (Meyer et al., 2002) we have confirmed by means of our mandibular FEM the presence of tensile and compressive isostatic strain lines in the condylar region during mastication. Therefore all these studies suggest new concepts need to be considered in the positioning of osteosynthesis plates along the tensile strains lines. The tensile strains lines are mainly responsible for the complications concerning plate fracture or

Table 2 — Directions and areas of insertion of the 6 muscular fascia and numerical values of the muscular forces

<table>
<thead>
<tr>
<th>Muscles</th>
<th>Cosine values of the muscle force directions</th>
<th>Area of muscular intersection (mm²)</th>
<th>Value of muscular forces (N)</th>
<th>Superficial traction (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>tx</td>
</tr>
<tr>
<td>LPT</td>
<td>0.10</td>
<td>0.76</td>
<td>0.64</td>
<td>363</td>
</tr>
<tr>
<td>LAT</td>
<td>0.07</td>
<td>-0.34</td>
<td>0.94</td>
<td>363</td>
</tr>
<tr>
<td>LDM</td>
<td>-0.27</td>
<td>0.18</td>
<td>0.94</td>
<td>470</td>
</tr>
<tr>
<td>LSP</td>
<td>-0.27</td>
<td>0.15</td>
<td>0.95</td>
<td>1098</td>
</tr>
<tr>
<td>LLP</td>
<td>-0.32</td>
<td>-0.03</td>
<td>0.94</td>
<td>1199</td>
</tr>
<tr>
<td>RPT</td>
<td>-0.10</td>
<td>0.76</td>
<td>0.64</td>
<td>363</td>
</tr>
<tr>
<td>RAT</td>
<td>-0.07</td>
<td>0.34</td>
<td>0.94</td>
<td>363</td>
</tr>
<tr>
<td>RDM</td>
<td>0.27</td>
<td>0.18</td>
<td>0.94</td>
<td>470</td>
</tr>
<tr>
<td>RSP</td>
<td>0.27</td>
<td>-0.15</td>
<td>0.95</td>
<td>1098</td>
</tr>
<tr>
<td>RMP</td>
<td>0.32</td>
<td>-0.03</td>
<td>0.94</td>
<td>1199</td>
</tr>
<tr>
<td>RLP</td>
<td>-0.25</td>
<td>0.94</td>
<td>-0.25</td>
<td>123</td>
</tr>
</tbody>
</table>

Table 3 — Numerical values of the gaps

<table>
<thead>
<tr>
<th>Union element</th>
<th>Gap value (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single union element</td>
<td>0.125</td>
</tr>
<tr>
<td>Double union element</td>
<td>1.307</td>
</tr>
</tbody>
</table>

Fig. 5 — Right subcondylar mandibular fracture: a) pre-operative Computed Tomographic (CT), b) open reduction and internal fixation with two plates, c) post-operative CT.
Fig. 6 — Right subcondylar mandibular fracture: a) pre-operative CT, b) intraoperative radiography with brilliance amplifier c) post-operative orthopantomogram.

Fig. 7 — Right subcondylar mandibular fracture: a) pre-operative CT, b) open reduction and internal fixation with two plates, c) post-operative CT.
screw loosening that lead to the displacement of the reduced condylar fragment with the consequent presence of a gap in the fracture line. For this reason, our surgical experience, supported by the results obtained from our study, suggests that the use of two plates in the fixation of condylar neck and subcondylar fractures (Lindahl, 1977), whenever possible, leads to significantly greater primary stability, compared with the use of a single plate. This first plate, fixed by four screws (two on each side of the fracture), is positioned parallel to the condylar neck axis, respecting the compressive strain lines in this region. This first plate helps to obtain “intermediary stability”, so permitting the restoration of the height of the ramus. But this same plate is not capable of resisting the biomechanical strains that occur in the condylar region during mastication, and more precisely the sagittal tension correlated to the tensile strain lines that lead to the displacement of the condylar fragment with the consequent appearance of the gap. This is the reason why it is necessary to position a second plate in an oblique direction along the tensile strain lines that run below and parallel to the sigmoid notch, in agreement with Champy’s concept of stable osteosynthesis (Champy and Lodde, 1976), with Meyer’s (Meyer et al., 2002) biomechanical studies and with the results that we obtained. This second plate should be fixed with at least one screw on each side of the fracture (Figs. 5–7). In agreement with Krenkel (1994) and more recently Choi (Choi et al., 1999), the second plate protects the first plate from damaging mechanical strains that could cause its fracture and a secondary displacement of the mandibular condylar fragment reduced.

CONCLUSION

From our results it is evident that the use of two plates, correctly positioned for the fixation of condylar neck and subcondylar fractures (Lindahl, 1977), represents the best solution to obtain a stable osteosynthesis, when load sharing plates are used.

ACKNOWLEDGEMENTS

Collaboration to: Prof. Engineer Mario Pasquino Professor Science of the Constructions Faculty of Engineering University “Federico II” Naples Prof. Engineer Ciro Verdoliva, Director Complex Structure Technical Activities A. Cardarelli Hospital, Naples.

References

